An SDN-enhanced load balancing technique in the cloud system

Byungseok Kang, Hyunseung Choo

Journal of supercomputing, Vol.73 No.1, 7 December 2016 (IF:1.088)



The vast majority of Web services and sites are hosted in various kinds of cloud services, and ordering some level of quality of service (QoS) in such systems requires effective load-balancing policies that choose among multiple clouds. Recently, software-defined networking (SDN) is one of the most promising solutions for load balancing in cloud data center. SDN is characterized by its two distinguished features, including decoupling the control plane from the data plane and providing programmability for network application development. By using these technologies, SDN and cloud computing can improve cloud reliability, manageability, scalability and controllability. SDN-based cloud is a new type cloud in which SDN technology is used to acquire control on network infrastructure and to provide networking-as-a-service (NaaS) in cloud computing environments. In this paper, we introduce an SDN-enhanced Inter cloud Manager (S-ICM) that allocates network flows in the cloud environment. S-ICM consists of two main parts, monitoring and decision making. For monitoring, S-ICM uses SDN control message that observes and collects data, and decision-making is based on the measured network delay of packets. Measurements are used to compare S-ICM with a round robin (RR) allocation of jobs between clouds which spreads the workload equitably, and with a honeybee foraging algorithm (HFA). We see that S-ICM is better at avoiding system saturation than HFA and RR under heavy load formula using RR job scheduler. Measurements are also used to evaluate whether a simple queueing formula can be used to predict system performance for several clouds being operated under an RR scheduling policy, and show the validity of the theoretical approximation.



Load balancing, Cloud manager, S-ICM, SDN

View Full Text